
django-edit-suggestion
Release 1

vladimir gorea

Jul 04, 2021

CONTENTS:

1 Install 1
1.1 Settings . 1

2 Usage 3
2.1 Parent Model Example . 3
2.2 How to use . 4
2.3 Create new edit suggestion . 4
2.4 Diff against the parent . 4
2.5 Publish . 4
2.6 Reject . 4
2.7 Foreign Fields different than type ForeignField . 5
2.8 M2M Fields . 5
2.9 M2M Through support . 5
2.10 Django REST integration . 6
2.11 Django REST integration for m2m through . 7

3 About 9

4 Github Repo 11

5 Todo 13

6 Changes 15

i

ii

CHAPTER

ONE

INSTALL

Install from PyPI with pip:

$ pip install django-edit-suggestion

1.1 Settings

Add django_edit_suggestion to your INSTALLED_APPS

INSTALLED_APPS = [
...
'django_edit_suggestion',

]

Requires to have Users

1

django-edit-suggestion, Release 1

2 Chapter 1. Install

CHAPTER

TWO

USAGE

It’s attached to a model via a field that during django setup phase creates a model related to that specific parent model.

EditSuggestion instances: - can be modified/deleted by the author of each instance - status can be “under review”,
“rejected” and “published” - status change need to pass a condition - changing the status to “published” updates the
tracked model and locks the edit suggestion from being edited/deleted

2.1 Parent Model Example

Model has a field “edit_suggestion” that instantiates EditSuggestion A serializer module and parent serializer is passed
as a tuple ex:

class Tag(models.Model)
name = models.CharField(max_length=126)

def condition_check(user, parent_model_instance, edit_suggestion_instance):
do some checks and return a boolean
if user.is_superuser or parent_model_instance.author == user:

return True
return False

class ParentModel(models.Model):
excluded_field = models.IntegerField()
m2m_type_field = models.ManyToManyField(Tags)
edit_suggestions = EditSuggestion(

excluded_fields=['excluded_field'],
m2m_fields=({

'name': 'm2m_type_field',
'model': Tag,
'through': 'optional. empty if not used',
}),

change_status_condition=condition_check,
bases=(VotableMixin,), # optional. bases are used to build the edit

→˓suggestion model upon them
user_class=CustomUser, # optional. uses the default user model

)

At django initializing stage the Edit Suggestion App creates a model for each Model having this field ex: “EditSug-
gestionParentModel”

Can access the model by ParentModel.edit_suggestions.model

3

django-edit-suggestion, Release 1

2.2 How to use

2.3 Create new edit suggestion

After setting up the field inside the parent model just create a new edit suggestion by invoking the model new()
method:

edit_suggestion = parentModelInstance.edit_suggestions.new({

**edit_data,
'edit_suggestion_author': user_instance

})

2.4 Diff against the parent

Can see the differences between the parent instance and the curent edit:

changes = edit_suggestion.diff_against_parent()

It will return an object ModelDelta that has the attributes: - object.changes: tracked changes - ob-
ject.changed_fields: changed fields name - object.old_record: parent instance - object.new_record: current edit in-
stance

2.5 Publish

To publish an edit suggestion you need to pass in an user. If the change_status_condition does not pass, a
django.contrib.auth.models.PermissionDenied exception will be raised.

edit_suggestion.edit_suggestion_publish(user)

This will change the status from edit_suggestion.Status.UNDER_REVIEWS to edit_suggestion.
Status.PUBLISHED. After publishing, the edit suggestion won’t be able to be edited anymore.

2.6 Reject

To reject an edit suggestion you need to pass in an user and a reason. If the change_status_condition does
not pass, a django.contrib.auth.models.PermissionDenied exception will be raised.

edit_suggestion.edit_suggestion_reject(user, reason)

This will change the status from edit_suggestion.Status.UNDER_REVIEWS to edit_suggestion.
Status.REJECTED. After rejecting, the edit suggestion won’t be able to be edited anymore.

4 Chapter 2. Usage

django-edit-suggestion, Release 1

2.7 Foreign Fields different than type ForeignField

If using a foreign field different than ForeignField, like mptt.fields.TreeForeignKey use argument
special_foreign_fields when initializing the EditSuggestion:

edit_suggestions = EditSuggestion(
excluded_fields=(

'created_at', 'updated_at', 'author', 'thumbs_up_array', 'thumbs_down_array'),
special_foreign_fields=['parent',],
change_status_condition=edit_suggestion_change_status_condition,
post_publish=post_publish_edit,
post_reject=post_reject_edit

)

2.8 M2M Fields

Can add ManyToManyField references by passing actual model or string. For referencing self instance use 'self':

class M2MSelfModel(models.Model):
name = models.CharField(max_length=64)
children = models.ManyToManyField('M2MSelfModel')
edit_suggestions = EditSuggestion(

m2m_fields=(({
'name': 'children',
'model': 'self',

},)),
change_status_condition=condition_check,

)

2.9 M2M Through support

Can use ManyToManyField with through table. The original pivot table will get copied and modified to point to the
edit suggestion model. To save/edit the edit suggestion with m2m through field need to use a custom method.

class SharedChild(models.Model):
name = models.CharField(max_length=64)

def __str__(self):
return self.name

class SharedChildOrder(models.Model):
parent = models.ForeignKey('ParentM2MThroughModel', on_delete=models.CASCADE)
shared_child = models.ForeignKey(SharedChild, on_delete=models.CASCADE)
order = models.IntegerField(default=0)

class ParentM2MThroughModel(models.Model):
name = models.CharField(max_length=64)
children = models.ManyToManyField(SharedChild, through=SharedChildOrder)
edit_suggestions = EditSuggestion(

m2m_fields=(({

(continues on next page)

2.7. Foreign Fields different than type ForeignField 5

django-edit-suggestion, Release 1

(continued from previous page)

'name': 'children',
'model': SharedChild,
'through': {

'model': SharedChildOrder,
'self_field': 'parent',

},
},)),

change_status_condition=condition_check,
bases=(VotableMixin,), # optional. bases are used to build the edit

→˓suggestion model upon them
user_model=User, # optional. uses the default user model

)

2.10 Django REST integration

In 1.23 comes with EditSuggestionSerializer and ModelViewsetWithEditSuggestion.

There are 2 serializers: the one for listing (with minimal informations) and the one for detail/form view with all info.

The serializer is used for supplying the method get_edit_suggestion_serializer to the serializer for the
model that receives edit suggestions. This method should return the edit suggestion serializer.

The serializer is used for supplying the method get_edit_suggestion_listing_serializer to the serial-
izer for the model that receives edit suggestions. This method should return the edit suggestion serializer.

class TagSerializer(ModelSerializer):
queryset = Tag.objects

class Meta:
model = Tag
fields = ['name',]

class ParentEditListingSerializer(ModelSerializer):
queryset = ParentModel.edit_suggestions

class Meta:
model = ParentModel.edit_suggestions.model
fields = ['pk', 'edit_suggestion_reason', 'edit_suggestion_author', 'edit_

→˓suggestion_date_created']

class ParentEditSerializer(ModelSerializer):
queryset = ParentModel.edit_suggestions
tags = TagSerializer(many=True)

class Meta:
model = ParentModel.edit_suggestions.model
fields = ['name', 'tags', 'edit_suggestion_reason', 'edit_suggestion_author']

class ParentSerializer(EditSuggestionSerializer):
queryset = ParentModel.objects
tags = TagSerializer(many=True)

class Meta:
model = ParentModel
fields = ['name', 'tags']

(continues on next page)

6 Chapter 2. Usage

django-edit-suggestion, Release 1

(continued from previous page)

@staticmethod
def get_edit_suggestion_serializer():

return ParentEditSerializer

@staticmethod
def get_edit_suggestion_listing_serializer():

return ParentEditListingSerializer

The ModelViewsetWithEditSuggestion is to be inherited from when creating the model viewset:

class ParentViewset(ModelViewsetWithEditSuggestion):
serializer_class = ParentSerializer
queryset = ParentSerializer.queryset

It will add edit_suggestions for GET and create_edit_suggestion for POST requests.

Have edit_suggestion_publish and edit_suggestion_reject for POST requests.

Thus, to retrieve the edit suggestions for a specific resource using django rest we would send a GET request to
reverse('parent-viewset-edit-suggestions', kwargs={'pk': 1}).

The url in string form would be /api/parent/1/create_edit_suggestion/.

To create an edit suggestion for a resource there are 2 ways: 1. POST request to
reverse('parent-viewset-create-edit-suggestion', kwargs={'pk': 1}) The
url in string form would be /api/parent/1/edit_suggestions/.

2. use ModelViewsetWithEditSuggestion method edit_suggestion_perform_create since
1.34 the foreign key fields are handled as well

To publish using the viewset send a POST request to reverse('parent-viewset-edit-suggestion-publish',
kwargs={'pk': 1}) with a json object having edit_suggestion_id key with the edit suggestion pk.

To reject using the viewset send a POST request to reverse('parent-viewset-edit-suggestion-reject',
kwargs={'pk': 1}) with a json object having edit_suggestion_id key with the edit suggestion pk and
edit_suggestion_reject_reason as the reason for rejection.

The responses will return status 403 if the rule does not verify, 401 for another exception and 200 for success.

2.11 Django REST integration for m2m through

In 1.30 we can handle creating edit suggestions with through m2m fields. It’s the same procedure as with creating a
normal edit suggestion but for the through m2m data we are using this data structure in the POST:

The creation is handled by the edit_suggestion_handle_m2m_through_field method of
ModelViewsetWithEditSuggestion viewset. If there is a need to handle this in a different way, just
override the method in your viewset.

2.11. Django REST integration for m2m through 7

django-edit-suggestion, Release 1

8 Chapter 2. Usage

CHAPTER

THREE

ABOUT

A django package for enabling django resources to be edited by users other than admin or resource author. The
resource (an instance of a django model saved to database) will have a list of “edit suggestions” created by other users.
The “edit suggestions” can be published, which will update the resource, or can be rejected. Users that pass a condition
can publish or reject edit suggestions.

9

django-edit-suggestion, Release 1

10 Chapter 3. About

CHAPTER

FOUR

GITHUB REPO

https://github.com/smileservices/django-edit-suggestion

11

https://github.com/smileservices/django-edit-suggestion

django-edit-suggestion, Release 1

12 Chapter 4. Github Repo

CHAPTER

FIVE

TODO

14/02/2021 Tests for file field, signals and copying parent model attributes

13

django-edit-suggestion, Release 1

14 Chapter 5. Todo

CHAPTER

SIX

CHANGES

1.40

1. fix m2m field str type

1.39

1. m2m fields work with specifying to relation by string (django style)

1.38

1. add support for foreign fields of type other than ForeignField

1.37

1. add support for file field. field is copied entirely

2. add support for signals

3. add support for copying parent model attributes

1.36

1. edit suggestions viewset uses parent run_validation method to get new suggestion data

1.35

1. bugfix tracking foreign field changes

1.34

1. add fix to handling foreign key fields on ModelViewsetWithEditSuggestion method
edit_suggestion_perform_create

1.33

1. edit suggestion publish: fix m2m through copying of instance children to parent

1.32

1. rest_views: publish/reject edit suggestion: add success messages

1.31

1. rest_views: use edit suggestion listing serializer when retrieving the list of edit suggestions

1.30

1. add m2m through support in rest views and refactor the create edit suggestion

1.29

1. add m2m through support

1.28

15

django-edit-suggestion, Release 1

1. edit_suggestions REST view returns paginated results. Can be filtered by status ex: api/
resources/88/edit_suggestions/?status=0

1.27

1. Add post_publish/post_reject hooks

1.26

1. REST viewset edit-suggestion-create returns serialized instance of edit suggestion

1.25

1. add edit_suggestion_publish and edit_suggestion_reject to
ModelViewsetWithEditSuggestion viewset

2. create tests for them

1.24

1. add m2m support to diff_against_parent

1.23

1. change status to Production/Stable

2. add django_rest support with adding EditSuggestionSerializer and ModelViewsetWithEditSuggestion

16 Chapter 6. Changes

	Install
	Settings

	Usage
	Parent Model Example
	How to use
	Create new edit suggestion
	Diff against the parent
	Publish
	Reject
	Foreign Fields different than type ForeignField
	M2M Fields
	M2M Through support
	Django REST integration
	Django REST integration for m2m through

	About
	Github Repo
	Todo
	Changes

